Final exam for Kwantumfysica 1 - 2005-2006
Wednesday 26 April 2006, 14:00 - 17:00

READ THIS FIRST:

Clearly write your name and study number on each answer sheet that you use.

On the first answer sheet, write clearly the total number of answer sheets that you
turn in.

Note that this exam has 3 questions, it continues on the backside of the papers!
Start each question (number 1, 2, 3) on a new answer sheet.

The exam is open book. You are also allowed to use formula sheets etc.

If it says “make a rough estimate”, there is no need to make a detailed calculation,
and making a simple estimate is good enough. If it says “calculate” or “derive”,
you are supposed to present a full analytical calculation.

If you get stuck on some part of a problem for a long time, it may be wise to skip it
and try the next part of a problem first.

If you are ready with the exam, please fill in the course-evaluation question
sheet. You can keep working on the exam until 17:00, and fill it in after shortly
after 17:00 if you like.

Useful formulas and constants:

Electron mass m. =9.1-107" kg
Electron charge e =-16-10"C
Planck’s constant h =6.626-102*Js=4.136- 10" Vs

Planck’s reduced constant % =1.055-10>*Js=6.582-10"'%eVs

Fourier relation between x-representation and k-representation of a state

¥(x) = ﬁj.?(k)e"“ dk

P(k)= o dx

ﬁj“}’(x)e

Z.0.Z.
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Problem 1

An apparatus for an experiment shoots out electrons one by one, in one particular
direction (the x-direction, the direction of the beam). After leaving the apparatus, the
beam is passing an area where no significant forces act on the electron. Consequently,
the electrons in the beam can be described as a free particle moving in one dimension.

a) Write down a Hamiltonian for one of the electrons in the beam. Explain your
answer.

The research team aims at setting up the experiment in such a way that all the
electrons leave the apparatus at the same speed, and that the quantum uncertainty in
the speed of each electron is quite small. They aim at giving the electrons a velocity of
100 m/s. To check whether the setup works, they measure at some point in the beam
(which they will define as x = 0) the velocity of a large number of electrons. They find
a probability distribution P(v) for the electrons' velocities v as in the figure below
(uniform, with v; =99 m/s and v; = 101 m/s).
P(v)

4

0 >

v, v,

b) They now remove this measurement apparatus from the beam, such that electrons
passing x = 0 are not disturbed. Describe and sketch a normalized wavefunction ¥(k)
as a function of wavenumber £ (in x-direction) for one of the electrons while it passes
x=0 (put in the sketch labels k; and k;, related to v, and v;). Use a wavefunction
which agrees with the observed distribution P(v), and show that it is normalized.
Assume that the wavefunction can be chosen real and positive where it is not zero.

¢) Calculate the wavefunction as a function of position x, that describes state of the
electron which you already described as a function of & for answering question b).
Hint: write k; as k.-4k and k; as k.+A4k (with k. = (k;j+k;)/2, and Ak = (kotk;)/2).

d) Sketch and describe the probability density as a function of x, for the wavefunction
you found in answer ¢).

e) Estimate the uncertainty in the momentum and the position of the particle when it is
near x = 0. Evaluate your answer.

f) They now put the measurement apparatus back into the beam. It measures the speed
of the electrons without trapping the electron (that is, the electrons continue to fly
along the beam). At some moment, an electron passes the measurement apparatus, and
the velocity is measured with very high accuracy, with result v,. Explain why one
should now assume that the wavefunction as a function of % is very close to the

form ¥ (k)= 6(k - k,,). Calculate , is the result is 99.5 m/s.
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g) For the case of f), consider the moment that the measurement was just finished, and
the electron is still near x=0. For this situation, calculate the wavefunction as a
function of x that describes the state of the electron.

h) Sketch the probability density as a function of x, for the wavefunction you found in
answer g).

i) Evaluate the validity of the description of the state of the system in answers f)-h).

j) One team members suggests to keep the velocity measurement apparatus in the
beam, as it reduces the quantum uncertainty in the velocity of the electrons. Discuss
whether this indeed is useful for meeting the goals that have been summarized above
the figure. Discuss it for individual electrons, and for the ensemble of electrons.

Problem 2
Note: Use Dirac notation for solving this problem.

Consider a system with a time-independent Hamiltonian A, that has only two energy
eigenstates. These have two different energies E; and E, with £, > E;.

a) Write down both the time-dependent and the time-independent Schrédinger
equation for this system in Dirac notation.

b) The time evolution of this system can be described using the time-evolution
it
operator U =¢ * . Derive this operator from the time-dependent Schrédinger equation.

¢) This system has an electrical dipole moment that is described by the operator D.

For this system, this operator D commutes with A. Assume that at some point in time
t = 0, the system is in some arbitrary superposition of the two energy eigenstates.

Show that this system will then never have any oscillations of <l§> in time. Use Dirac

—iflt

notation and the operator U =¢ * .
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Problem 3

In a molecule, an electron is tightly bound to the other particles in the system. In one
direction, however, it is free to move a little bit from one atom to a neighboring atom.
Along this direction, the electron experiences a one-dimensional potential V(x) as a
function of position x. The potential V(x) can be approximated very well by the
potential landscape as in the following sketch.

V=00 V=00

region 1 region 2 region 3 region 4

a) Give the Hamiltonian for this system, with the potential V(x) written out for each
region along x.

b) It turns out that the energy for the ground state of this system E;,> V4.
Consequently, a general form for the part of the wavefunctions of the energy

eigenstates in region 2 will be ¢, (x)= Ae™ + Be™* | while for region 3 it will be
@,(x)=Ce" + De™™* ., In regions 1 and 4 the wavefunctions will be zero. Explain
why this can be assumed for regions 1, 2, 3 and 4 (see also question ¢) ).

¢) Give expressions for &k, and k3. Show how these expressions can be derived from
the time-independent Schrédinger equation.

d) To find the energy eigenvalues and eigenfunctions of this system, on needs to write
down equations that can be used to solve for 4, B, C and D. Explain how one can
define the set of equations needed to solve this problem, and give these equations (do
not worry about normalization of the eigenstates yet).

€) Show that working out this problem of d) is equivalent to solving the following
linear algebra problem: My =5, with

1 1 -1 -1 A 0

Mo —Zkz S I - B ()
e " e 0 0 C 0
0 0 % e D 0

f) Use qualitative reasoning to find out what the shape is of the wavefunction for
ground state and the first excited state as a function of x. Draw a sketch for these two
wavefunctions, and explain your answer. Hint: consider this system as the result of
two coupled particle-in-a-box systems, where the width of the tunnel barrier between
the two boxes is reduced to zero, and the degeneracy of the two boxes is lifted. Also
use the answer on c) if needed.
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